Telegram Group & Telegram Channel
В каком случае вы будете наблюдать изменение метрики specificity?

Specificity отражает то, насколько часто классификатор правильно не относит объекты к классу.

Метрика будет изменяться, если:

▫️изменится количество правильно классифицированных отрицательных случаев.
▫️изменится количество ложноположительных (FP) результатов.
▫️изменится порог решения классификатора.

▶️ Например, у нас есть группа пациентов, проходящих тест на определённое заболевание. Specificity определяется как доля правильно идентифицированных здоровых пациентов (TN) от общего числа действительно здоровых пациентов (TN + FP). Предположим, что из 100 пациентов 20 действительно болеют, а 80 здоровы. Тест правильно определил 70 здоровых как здоровых (TN) и ошибочно определил 10 здоровых как больных (FP). В этом случае метрика будет равна 0.875. Затем тест улучшили, и он правильно идентифицирует 75 здоровых пациентов как здоровых (TN) и 5 здоровых пациентов как больных (FP). Specificity выросла до 0.9375.

#машинное_обучение



tg-me.com/ds_interview_lib/201
Create:
Last Update:

В каком случае вы будете наблюдать изменение метрики specificity?

Specificity отражает то, насколько часто классификатор правильно не относит объекты к классу.

Метрика будет изменяться, если:

▫️изменится количество правильно классифицированных отрицательных случаев.
▫️изменится количество ложноположительных (FP) результатов.
▫️изменится порог решения классификатора.

▶️ Например, у нас есть группа пациентов, проходящих тест на определённое заболевание. Specificity определяется как доля правильно идентифицированных здоровых пациентов (TN) от общего числа действительно здоровых пациентов (TN + FP). Предположим, что из 100 пациентов 20 действительно болеют, а 80 здоровы. Тест правильно определил 70 здоровых как здоровых (TN) и ошибочно определил 10 здоровых как больных (FP). В этом случае метрика будет равна 0.875. Затем тест улучшили, и он правильно идентифицирует 75 здоровых пациентов как здоровых (TN) и 5 здоровых пациентов как больных (FP). Specificity выросла до 0.9375.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/201

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA